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The ab initio effective valence shell Hamiltonian (H ν) theory is employed to reparametrize the standard
MNDO Hamiltonian for MNDO-πCI (configuration interaction) excited-state calculations for the small,
protonated Schiff base 2,4-pentadien-1-iminium. The revised parametrization, calledHMNDO

π , differs from
the ground-state parametrization via adjustment of the basic p-orbital parameters:UC, UN, âC, GC,C, GN,N.
The âC resonance integral is adjusted to remove all electron-electron correlation from the MNDO one-
electron, two-centerHu,V π-electron integrals. Likewise, a small correction of 0.25 eV is appended to both
UC andUN. The MNDO ground-stateGC,C andGN,N π-electron one-center, two-electron repulsion integrals
are increased in value by about 1.5 and 2 eV, respectively, to reproduce the average of the ab initioH ν

one-center, two-electron effective integrals. SubsequentHMNDO
π calculations reproduce the lowest-lyingab

initio H ν 20 vertical excitation energies to less than 0.2 eV on average (when fullπCI is employed). We
also estimate the size-consistency errors in previous ab initio MRSDCI calculations for the planar and twisted
geometries to be as large as 0.2-0.3 eV. Thus, the MNDO-CI method has the potential of achieving excellent
accuracy for similar molecules when properly parametrized.

I. Introduction

The electronically excited states of polyenes generate much
theoretical interest because they play a key role in the function
of many photoactive proteins such as the rhodopsin visual
pigments, the pigment bacteriorhodopsin (BR), and other
photoactive proteins (see refs 1-3). Historically, theoretical
studies have utilized two seemingly diametrically opposed
approaches: semiempirical methods and ab initio theory. The
simple and efficient semiempirical methods permit detailed
studies of the spectra and photodynamics of these chromophores
in their natural environments. For example, the standard MNDO
method has been reparametrized for excited-state configuration
interaction (CI) calculations and used with reasonable success
to examine the excited-state photodynamics of retinal,4 to
interpret the two-photon properties of bacteriorhodopsin,5 and
to suggest a model for the origins of photoreceptor noise in
vertebrate rhodopsin.6 Likewise, Warshel et al. employ the
π-electron semiempirical theory QCFF-PI to study the photo-
dynamics of the visual pigments.2,7 Nevertheless, current semi-
empirical methods still lack the accuracy to fully resolve the
issues surrounding the excited-state spectra and photodynamics
of these systems. It is of interest to develop new and improved
excited-state MNDO-CI methods8,9 for treating biological chro-
mophores such as protonated Schiff base polyenes.
In principle, ab initio techniques can provide the accuracy

necessary to treat these large polyenes. However, the signifi-
cantly increased memory and CPU requirements limit their
application. Our goal is to exploit ab initio techniques to
improve the accuracy and applicability of current semiempirical
methods. Unfortunately, few studies attempt this approach
because of the perceived incompatibilities between rigorous ab

initio theories and phenomenological semiempirical methods.
Indeed, some ab initio studies mistakenly criticize the basic
foundations of semiempirical models.10 The standard ab initio
formulations mandate split-valence shell basis sets and different
orbitals for each excited state, yet semiempirical methods utilize
a minimal basis set of valence orbitals and the same core orbitals
for all excited states. Further confusion arises because of
limitations in the standard software packages. A recent theoreti-
cal study of the model Schiff base 2,4-pentadien-1-iminium
(Figure 1) by Dobado and Nonella11 shows that AM1-CI
calculations, as implemented in MOPAC93, fail to reproduce
ab initio MRSDCI calculations of the excited-state singlet
potential energy surface. Implicit in their discussion of the AM1
method is the suggestion that such failure is inherent in the
MNDO method. We demonstrate here, however, that given
suitable parameterization, that MNDO-πCI calculations can
yield accurate vertical excitation energies for all low-lying
excited states.
There does, in fact, exist a rigorous ab initio theory which

not only produces highly accurate ab initio ground- and excited-
state data but also provides an ab initio basis set for semiem-* To whom correspondence should be addressed. E-mail: rbirge@syr.edu.

Figure 1. Geometry and atom numbering of the protonated Schiff base,
2,4-pentadien-1-iminium cation. This geometry was used in all
calculations unless stated otherwise.
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pirical theory. This method is called the effective valence shell
Hamiltonian (H ν) theory.9,12-16 PreviousH ν calculations
examined the excited states of 2,4-pentadien-1-iminium (see
Figure 1)12 and longer Schiff bases.13 H ν vertical excitation
energies for 2,4-pentadien-1-iminium compare to within 0.1-
0.2 eV with other state-of-the-art ab initio calculations, such as
MRSDCI calculations by Davidson12 and others,17 the CASS-
CF17,18 and CASSCF+MP2 methods,19,20 and the popular
CASPT2 method.21 The same calculations simultaneously
provideπ-electron effective integrals which are ab initio analogs
of semiempirical parameters suitable for excited-state semiem-
pirical calculations.
The ab initio effective integrals, being, in principle, exact,

display a much richer structure than their semiempirical
counterparts; they take on different numerical values, show a
breakdown of transferability, and include three-electron integrals
not present in semiempirical models. Here we explain how to
use theH ν theory to reparametrize the readily available
MOPAC93 semiempirical package for MNDO-πCI calculations
on 2,4-pentadien-1-iminium. The first section clarifies the
relationship between the ab initioH ν theory and the semiem-
pirical MNDO-πCI calculations. The next section compares
semiempirical MNDO-πCI Hamiltonian to ab initioH ν com-
puted previously for a planar geometry of 2,4-pentadien-1-
iminium.12

We explicitly explain how to compare the MNDO parameters
to theH ν effective integrals and how to modify the MNDO
p-orbitalUC, UN, âC, GC,C, andGN,N to reproduce the lowest-
lying ab initio H ν 20 vertical excitation energies to less than
0.2 eV on average. The third section considers why previous
MNDO-PSDCI calculations yielded reliable results. Finally,
the last section evaluates the accuracy of ab initio SDCI
calculations on the excited-state potential energy surface for 2,4-
pentadien-1-iminium. ApproximateH ν calculations provide an
estimate of the ab initio size-consistency errors associated with
ab initio computations of the excited-state potential energy
surface.11 We also demonstrate that reparametrizing the MNDO-
CI method for the ground-state spectra greatly improves the
computation of the excited-state potential surface.

II. Theory: The Relationship betweenH ν and
MNDO-πCI Calculations
The ab initio effective valence shell Hamiltonian (H ν) theory

provides a route to developing new and improved semiempirical
models and optimizing the parameters. Over the past few years
research inH ν theory has pursued the following research goals:
12-16 (1) to provide an exact theory for semiempirical models,
and, in particular, forπ-electron theories;22-25 (2) to implement
the H ν method using standard ab initio electronic structure
techniques on simple polyenes;12,13,16,26-30 (3) to demonstrate
that theH ν method provides state-of-the-art ab initio data which
compares in accuracy with the best ab initio methods available
such as MRSDCI11,17 and CASSCF+MP2 and CASPT2 cal-
culations;19,21 (4) to test the basic assumptions ofπ-electron
semiempirical methods on a number of model polyenes (these
tests validate such approximations as the choice of theπ-electron
minimal basis set, a portion of the ZDO approximation, and
the numerical values of many of the semiempirical parameters29-32

and (5) to make theH ν theory more accessible to the general
semiempirical community.
With items (1) through (4) now in place, it is appropriate to

seek the goal of demonstrating how to apply theH ν approach
to enhancing the reliability of current semiempirical methods.
First let us consider why we must reparametrize the ground-

state MNDO Hamiltonian for excited states. A standard MNDO

semiempirical calculation approximates the exact quantum
mechanical ground-state electronic energy of a given molecule
by using a phenomenological parameterization of the Hartree-
Fock (HF) equations. Although the MNDO HF equations
resemble the ab initio minimal basis set HF theory, a MNDO
calculationdoes notapproximate an ab initio minimal basis set
HF calculation. Because the model has been parametrized
against experimental data, it must approximate large basis set,
fully correlated ab initio calculations. Therefore, the MNDO
ground-state parameters must implicitly include the ab initio
correlation contributions (including the corrections due to the
larger basis set and correlation corrections to the Hartree-Fock
wave function). A complete “ab initio” theory of semiempirical
methods would specify explicitly how the ab initio correlation
corrections enter into the ground-state semiempirical MNDO
HF parameters.
Even without such a complete theory, it is intuitively obvious

that the MNDO ground-state parameters cannot just be applied
to excited-state CI calculations because the CI will then
overcorrelate the ground state. Consider a MNDO-πCI calcula-
tion using the standard MNDO parameterization. The MNDO-
πCI method first constructs theπ-space CI matrix using the
ground-state parameters as approximate valence electron inter-
actions, but upon diagonalizing theπCI matrix, the ground state
becomes correlated again. Because the HF MNDO parameter-
ization already approximates the fully correlated ground state,
the new CI ground state is overcorrelated. To avoid overcor-
relation, MOPAC93 uses ground-state parameters in CI calcula-
tions of the excited states but provides both the HF and CI
ground state as reference states. A more consistent approach
would be to remove the empirical portion of the correlations
from the ground-state HF parameters and just performπCI
calculations for both the ground and excited states. Such a
procedure, however, will break down the MNDO assumptions
of rotational invariance and parameter transferability and,
consequently, require ad hoc procedures or significant modifica-
tions of the basic formalism.
The effective valence shell Hamiltonian (H ν) theory explains

how to compute the effective valence electron interactions
suitable for MNDO-πCI calculations for all states in a specific
molecule. Consider performing MNDO-πCI calculations on the
Schiff base polyene 2,4-pentadien-1-iminium. When the mol-
ecule is planar (see Figure 1), the sixπ-molecular orbitals (MOs)
consist solely of linear combinations of the MNDO atomic pπ
orbitals. Thus, a MNDO-πCI calculation resembles the semiem-
pirical π-electron theory such as the familiar Pariser-Parr-
Pople (PPP) method.23-25 The effective valence shell Hamil-
tonian (H ν) theory provides ab initio effective integrals which
directly correspond to the appropriate MNDO-πCI parameters.
How do these ab initioH ν π-electron effective integrals

specifically relate to the standard MNDO parameters? The ab
initio H ν takes the form

whereEc is the correlated core energy of theσ-framework, and
U1

ν, V1,2, and W1,2,3
ν are “effective” one-, two-, and three-

electron valence shell operators, respectively. To a good
approximation one may neglect the majority of theH ν integrals
and simply relate traditional MNDO parameters to matrix
elements of the correspondingH ν effective operators. Of
course, the semiempirical parameters are expressed in a localized
basis, so theH ν integrals must be transformed to a localized
basis set, namely, to Lo¨wdin orthogonalized atomic orbitals

H ν ) Ec + U1
ν + V1,2

ν + W1,2,3
ν + ... (1)
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(LO).33,9 In the standard Dirac notation, the ab initio analogs
of the MNDO-CI integrals take the form

whereUu is the one-electron, one-center integral for LO pu,Hu,V
is the two-center, one-electron integral between LOs pu and pV,
andGu,u and〈pu,pV|pw,px〉 are the corresponding one-center and
two-center two-electron integrals, respectively, in Dirac notation.
Note that previous work onπ-electron theory employs the Greek
symbolsâu,V ) Hu,V andγu,u ) Gu,u for theπ-electron effective
integrals. Also, the MNDO matrix elementsHu,V are param-
etrized byHu,V ) Su,V1/2(âu + âV), whereSu,V is the atomic orbital
overlap matrix andâu and âV are the optimized MNDO
resonance parameters. The MNDO parametersUu, âu, andGu,u

appear in MOPAC93 in the BLOCKDATA subroutine.
The comparison between the MNDO andH ν integrals

requires several modifications of the standard MOPAC93
program because theH ν integrals are computed in a LO basis
over the entire set of pπ atomic orbitals and because these
integrals are appropriate for fullπCI calculations. First, the
MOPAC93 CI option automatically defines the six CI space
molecular orbitals by selecting the three lowest energy HF
occupied MOs and three highest orbital HF unoccupied MOs.
But in 2,4-pentadien-1-iminium the lowest three MOs include
a high-lyingσ-orbital, so we have modified MOPAC93 to allow
us to select theπ-molecular orbitals. Second, MOPAC93 does
not compute the two-centerHu,V integrals directly. Therefore,
we computeHu,V after performing the MNDO SCF calculation
and then transform the MNDO one-electronHu,u andHu,V to
the LO basis. Note that MOPAC already outputs the two-
electron integrals in an orthogonalized basis. Third, the
MOPAC93 multielectron configuration interaction (MECI)
option is limited to a relatively small number of “microstates”,
or valence space slater determinants. Since theH ν effective
integrals are suited for full CI calculations, we interfaced
MOPAC93 to theH ν full CI program.
Finally, note that the MNDO assumptions of “rotational

invariance” complicate the comparison betweenH ν effective
integrals and the MNDO parameters because theH ν approach
distinguishes betweenσ- andπ-orbitals. To maintain rotational
invariance, MNDO has theUu, âu, andGu,u parameters identical
for all three p orbitals on atomu. This invariance must break
down for MNDO-πCI calculations because the pπ and pσ require
different amounts of electron-electron correlation. The pπ
orbitals lie in the valence space so correlation contributions must
be removed from these interactions. The pσ orbitals only
contribute to theEc correlated core energy (eq 1) and should
remain unchanged. Because the MNDO rotational invariance
is hard coded into the MOPAC93 program, removing correlation
contributions from the MNDO p-orbital parameters actually
corresponds to removing the correlation contributions from all
p parameters. Nevertheless,Ec cancels when computing vertical
excitation energies. Therefore it is not necessary to adjust the
MNDO σ-orbital parameters. A complete MNDO-πCI rep-
arametrization must also adjust the MNDOσ-orbital parameters
(and possibly other terms) to reproduce the ab initio correlated
energy of theσ-framework (Ec).

III. Results and Discussion

A. Comparison betweenH ν and MNDO-πCI Integrals
for 2,4-Pentadien-1-iminium. The ab initio H ν being, in
principle, exact, has many more effective integrals than the
semiempirical counterparts. TheH ν contains not only all one-
and two-electron effective integrals, including those neglected
in the NDO approximations, but also three- and four-electron
effective integrals. Nevertheless, previous protonated Schiff
base calculations demonstrate that these integrals contribute only
a few tenths of 1 eV to the vertical excitation energies.12,33The
remaining small set of ab initio integrals display unique
geometry dependencies which cannot be accounted for easily
within the MNDO framework. Therefore, we wish to determine
the minimal number of corrections necessary to modify the
currently available MOPAC93 program to adjust the MNDO
ground-state parametrization to reproduce the ab initio excited-
state spectra with ab initio accuracy (at least 0.3 eV21).
A recentH ν study computes the compete set ofπ-electron

effective integrals for the 2,4-pentadien-1-iminium cation at a
particular, planar geometry12 (see Figure 1). Because theH ν

effective integrals depend on the molecular geometry, we
compare theH ν integrals to the MNDOπ-electron parameters
for 2,4-pentadien-1-iminium, employing the same geometry as
the ab initio calculations. Table 1 summarizes selectedH ν

effective integrals and the standard MNDO integrals, in the
localized, Löwdin orthogonalized basis of pπ orbitals. Table 1
only lists the bare valence shell interactions for comparison.
(We only consider the semiempirical MNDO parametrization
because compared to the differences between theH ν and
MNDO integrals, the deviations between the MNDO, AM1, and
PM3 parametrizations are insignificant.) Table 1 also presents
two other parametrizations, denoted MNDO-B and HMNDO

π ,
explained below.
The most obvious differences between the MNDO andH ν

Hamiltonians arises in the ground-state MNDOπ-electron two-

Uu ) 〈pu(1)|U1
ν|pu(1)〉 (2)

Hu,V ) 〈pu(1)|U1
ν|pV(1)〉 (3)

Gu,u ) 〈pu(1),pu(2)|V1,2ν |pu(1),pu(2)〉 (4)

〈pu,pV|pw,px〉 ) 〈pu(1),pV(2)|V1,2ν |pw(1),px(2)〉 (5)

TABLE 1: Comparison of SelectedH ν Effective Integrals
(eV) and Semiempirical MNDO p-Orbitala Parametrized
Integrals (and MNDO One-Electron Parameters) for
2,4-Pentadien-1-iminium Cation at a Planar Geometryb

bare H ν MNDO MNDO-B HMNDO
π

integral
U1 -50.4378 -47.1835 -45.2883 -45.3517 -46.2184
U2 -46.6699 -44.8118 -44.5008 -44.5885 -45.0476
U3 -47.1333 -44.2670 -44.5010 -44.5600 -45.0617
U4 -44.7955 -42.6878 -42.8957 -42.9538 -43.4772
U5 -41.7294 -39.7809 -39.6287 -39.6597 -40.1984
U6 -34.9557 -34.8368 -34.0107 -34.0068 -34.5547
H2,1 -3.7118 -3.6184 -3.0312 -3.6271 -3.6783
H3,2 -3.0273 -2.9126 -1.6345 -2.7245 -2.7355
H4,3 -3.6317 -3.4648 -1.9819 -3.2953 -3.3201
H5,4 -3.0904 -2.8604 -1.6346 -2.7205 -2.7342
H6,5 -3.7094 -3.3768 -1.9839 -3.2948 -3.3165
G1,1 19.8745 15.0405 12.98 12.98 15.04
G2,2 16.7194 13.3508 11.08 11.08 12.80
G3,3 16.8944 12.8183 11.08 11.08 12.80
G4,4 16.8928 12.8049 11.08 11.08 12.80
G5,5 16.8920 12.6269 11.08 11.08 12.80
G6,6 16.3550 12.3566 11.08 11.08 12.80

parameterc

UC -39.2056 -39.2056 -38.9556
UN -57.1723 -57.1723 -56.9223
âC -7.9341 -14.2800 -14.2800
âN -20.4958 -20.4958 -20.4958
GC,C 11.08 11.08 12.80
GN,N 12.98 12.98 15.04

aNo s-orbital integrals or parameters shown.bCalculations described
in text. cMNDO p-orbital one-electron parameters.
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centerHu,V integrals. The MNDOHu,V values differ by 1 eV or
more from their ab initioπCI value, as computed in the Lo¨wdin
orthogonalized basis, and by about a factor of 2 when in the
nonorthogonal atomic orbital basis (not shown). In fact, the
third-orderH ν Hu,V values only differ from the bare 1-electron,
2-center integral by at most 0.1-0.2 eV, indicating that
the higher order perturbation corrections to theHu,V )
〈pu(1)|U1

ν|pV(1)〉 effective integrals mostly cancel. Thus, the
ground-state MNDOHu,V parameter requires empirical correc-
tions to mostly account for the “nondynamical” correlations
among theπ-electrons which appear in the ground-state wave
function after diagonalizing theπCI matrixsat least for pro-
tonated Schiff base polyenes.
The one-centerUu ) Hu,u parameters require only small

amounts of correlation, and the current model forUu reproduces
UN and the geometry-dependentUC quite well. First, note that
the correlations contribute most strongly near the NH2

+ moiety.
The bareUN value is about 50.4 eV while the third-orderUN

contains 3.2 eV of correlation, whereas the bare and effective
UC6 differ by only 0.1 eV. Second, despite the wide variation
in correlation contributions toUu matrix elements, the MNDO
model recovers over 98% of these effective integrals. The
HMNDO

π , UN and UC6 parameters are-46.4 and-35.4 eV,
which only differ from theH ν values by 0.8 and 0.6 eV,
respectively.
The largest correlation contributions enter the two-electron

GC,C andGN,N effective Coulomb interaction, thusH ν effective
integrals display the strongest deviations from the MNDO one-
center, two-electron parameters. The ab initio effectiveπ-elec-
tron GC,C vary by 0.5 eV or more between different carbon
centers. The variation inGC6,C6 arises from atomic orbital
overlap, and more sophisticated MNDO methods, such as
MNDOC, may account for such effects.9 But the variation in
GC2,C2results purely from electron-electron correlation effects
due to the nearby NH2

+ group, and no current semiempirical
methods model such variations. Generally theH ν GC,C and
GN,N are 1.5-2 eV larger than the standard MNDO values, and
can vary by up to 1 eV depending on the molecular environment.
The MNDOGN,N ) 12.98 eV whereas the ab initioGN,N )
15.04 eV for 2,4-pentadien-1-iminium.H ν calculations on
larger Schiff bases indicated that the ab initioGN,N and other
GC,C values do not stabilize until the Schiff base has at least
four double bonds.13 For instance,GN,N ) 15.25 eV for
propeminium (C3H4NH2

+) and 13.67 for the longer C7H8NH2
+

Schiff base (as computed using the third-orderH ν).
The remaining MNDOπ-electron integrals do differ from

the ab initioH ν effective interactions, but not so significantly
to warrant further investigation here. In particular, the other
two-electron Coulomb MNDO integrals (〈pu,pV|pu,pV〉) differ by
0.1-0.65 eV from theH ν 〈pu(1),pV(2)|V1,2

ν |pu(1)pV(2)〉) effec-
tive integrals, with the largest deviations at short range. And,
as discussed above, the MNDOUu parameters recover 98% of
the ab initio values. Thus, to correct the ground-state MNDO
parametrization for MNDO-πCI calculations, theπ-electron CI
correlations must be removed from the ground-state MNDO
two-center Hu,V and one-centerGC,C and GN,N π-electron
effective integrals, whereas the remaining MNDO-CIπ-electron
integrals can then be computed using the standard MNDO
functional forms.
We can understand why the ab initioH ν GC,C depends

on its molecular environment by contrasting the develop-
ment of semiempiricalπ-electron and all-valence-electron
methods.9,22,24,25,34-37 HistoricallyGC,Chas been taken as it was
in the originalπ-electron (i.e. Pariser-Parr-Pople) theories,

namely, the experimental carbon atom ionization potential (IP)
minus the electron affinity (EA):

Modernπ-electron theory recognizes thatGC,C should depend
on the molecular environment; however, in the all-valence-
electron semiempirical theoriesGC,C is a fixed value.25 Again,
the breakdown of the MNDO rotational invariance implies that
the exact MNDO-πCI parameters should resemble more modern
π-electron theories.
Further insight into the geometry dependence ofGC,C comes

from examining the ab initio equations for the matrix elements
of the V1,2

ν effective operator (the effective integrals). For
example, consider the second-order ladder-type diagrams pre-
sented below (and schematically in Figure 2)15

whereεi denotes the energy of theπ-molecular orbital pi and
the valence orbital indicesi, k, and l refer to the valence spin
orbitals, the sum overR andR′ ranges over all valence and
excited spin orbitals, except thatR and R′ cannot both
simultaneously be valence spin orbitals, and

Figure 2. Schematic representation of the first two contributions to
the effective Coulomb interaction, the bare space (R12-1) interactions,
and the second-order (folded) ladder diagram. The bare space interac-
tion, R12-1, couples theπ-electrons, e-, directly through space, while
the perturbative corrections, such as the ladder diagram, couples the
π-electrons via scattering into theσ-framework. The equation at top
provides a diagrammatic expression for the dominant, second-order
contributions to the effective Coulomb interaction,V12, which includes
R12-1, three dominant second-order contributions (ladder, RPA, and
single-particle interaction Brandow diagrams), and additionally, numer-
ous third-order contributions (indicated with the ellipses).

GC,C) IP(C)-EA(C) (6)

〈pi(1),pj(2)|V1,2ν |pl(1),pk(2)〉 ) 〈pi(1),pj(2)| 1R1,2|pl(1),pk(2)〉 +

1/4 ∑
R,R′

ν̃ij ,R,R′,kl

εk + εl - εR + εR′

+ 1/4 ∑
c,c′

ν̃ij ,c,c′ν̃c,c′,kl

εk + εl - εc + εc′

+ ...

(7)
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As seen in Figure 2, the effective Coulomb interactions consist
of a direct, through-space (or bare) interaction (1/R1,2) and
indirect, virtual (or effective) interactions (V/∆E). The effective
interactions couple the two valence electrons indirectly through
theσ-framework (c,c′) and the other valence and excited (R,R′)
orbitals. The exact ab initio expressions forGC,CandGN,N must
then clearly depend on their molecular environment to some
extent, but only ab initio calculations can elucidate these
variations.
The valence shell effective interactions also display spatial

locality in that the electrons closest in space interact the most
strongly. The largest correlations appear in effective Coulomb
integralsGC,C andGN,N andGN,N because the valence electrons
reside in the same atomic orbital. Likewise, theHu,V integrals
require far less correlation because the effectiveU1

ν operator
only renormalizes the interactions for one valence electron.
B. Constructing the MNDO-πCI Parametrization for 2,4-

Pentadien-1-iminium. TheH ν Schiff base calculations dem-
onstrate that the bulk of theπCI parametrization enters the
ground-state MNDOHu,V, GC,C, andGN,N parameters, so by
adjusting these parameters MNDO-πCI calculations should
reproduce ab initioH ν vertical energy differences for this small
polyene.
Because our ab initio calculations serve as the reference for

evaluating the new MNDO-πCI parametrization, let us first
qualify the accuracy of the ab initioH ν excited-state calcula-
tions. TheH ν spectrum reported here arises from the third-
orderH 3rd

ν computations which employ “constrained” molec-
ular orbitals and which retain all effective integrals.12 In neutral
polyenes, constrained calculations misrepresent electronic states
which require large polarization and Rydberg contributions.33

The most accurateH ν calculations generally employ uncon-
strained, or “full” valence spaces, which include more of the
orbital polarization corrections and additional Rydberg orbitals.
Protonated Schiff bases do not require the additional Rydberg
orbitals, and the lowest singlet states require less polarization
contributions.12 Therefore, the constrained orbitals perform well
for describing the low-lying states. This observation also
explains why the Schiff base model Hamiltonians perform well
even though they lack three-electron interactions; theH ν three-
electron operators describe, at lowest order, ab initio orbital
polarization corrections.12,33 Polarization corrections will be-
come more important for the higher-lying excited states and
for the low-lying singlet states at twisted geometries.11

We present a much larger portion of the low-lying spectrum
of valence-like states than previously reported in order to
demonstrate how well the new MNDO-πCI parametrization
performs. Because theH ν approach calculates the effective
operator itself, a single ab initio calculation yields allπ-electron
valence states. In contrast, the MRSDCI and CASSCF+MP2
methods require seperate calculations for every excited state.
Although theH ν constrained calculations may err for the higher-
lying states, since no other ab initio data is available for
comparison we have arbitrarily chosen to evaluate the lowest
20 excited states for our reference spectrum. In practice one
should not expect MNDO-πCI calculations to reproduce all
electronically excitedπ-state excitation energies because the
MNDO Hamiltonian lacks explicit three-electron operators.
Table 1 lists parameters for three different MNDO-CI

parametrizations, denoted as MNDO, MNDO-B, and HMNDO
π .

The MNDO-B parametrization only modifies the MNDOâC,
rescaling it by a factor of 1.8 (shown in Table 1). This
effectively removes the correlation contributions from theHu,V
matrix elements since the MNDO model hasHu,V ) Su,V1/2(âu
+ âν), whereSu,V is an atomic orbital overlap matrix. Note
that resetingâC also modifies the values ofUC andUN listed
because Table 1 presents these integrals in a Lo¨wdin orthogo-
nalized basis. (It is also possible to further adjust the MOPAC
Hu,V integrals by scaling theSu,V p-orbital overlap matrix. This
is sometimes refered to as adjusting theπ-orbital mobility.5 (See
subsection III.C below.)
The HMNDO

π additionally adds 0.25 eV toUC andUN, plus it
resets theGN,N and GC,C parameters to 15.04 and 12.8 eV,
respectively. The adjustment of theUC andUN brings these
semiempirical parameters in closer agreement with the ab initio
values, although it modifiesHu,V values as well. The newGN,N

one-center, two-electron parameters now equal the ab initioGN,N

value. Whereas the newGC,C parameter is taken as the average
ab initio GC,C value, the MOPAC program expects allGC,C

parameters to have the same value. After resetingâC, GN,N,
andGN,N, andGC,C in the MOPAC93 program (in the BLOCK-
DATA subroutine), the remaining MNDO integrals (UC, UN,
and all remaining two-electron integrals〈pu,pV|pw,px〉) arise from
the standard MNDO formulas.
Table 2 tabulates spectra from the ab initioH ν and three

seperate MNDO-πCI (MNDO, MNDO-B, andHMNDO
π ) calcu-

lations. (It also includes a calculations denoted asH ν-SDCI,
which is used to estimate the magnitude of ab initio size
consistency corrections.) All of the calculations have six
π-molecular orbitals in the valence space and diagonalize the
full πCI matrix. The ground-state MNDO parametrization
performs extremely poorly for excited-state MNDO-πCI cal-
culations, as noted previously. With the simple correction of
the inaccurateâC MNDO parameter, however, the MNDO-B
πCI calculations reproduces the 9 lowest-lying ab initioH ν

singlet excited states quite well. The average error (〈Error〉)
from theH ν data is a mere-0.08 eV. The average absolute

ν̃ij ,kl ) 〈pi(1),pj(2)| 1R1,2|pk(1),pl(2)〉 -

〈pi(1),pj(2)| 1R1,2|pl(1),pk(2)〉 (8)

TABLE 2: Comparison of Computed Low-Lying Excitation
Energies (eV) for the 2,4-Pentadien-1-iminium Cationa

state H ν MNDO MNDO-B HMNDO
π H ν-SDCI

singlets
21A′ 4.50 2.91 4.60 4.67 4.72
31A′ 5.80 3.14 6.25 6.06 6.00
41A′ 7.13 4.89 6.80 6.90 7.47
51A′ 8.01 5.33 7.09 8.11 8.38
61A′ 8.26 5.90 8.00 8.61 8.61
71A′ 9.42 6.31 8.88 9.40 9.80
81A′ 9.64 6.50 9.28 9.70 9.97
91A′ 10.14 6.97 9.70 10.20 10.64
101A′ 10.89 7.27 10.37 11.02 11.36

triplets
13A′ 2.76 1.86 3.09 2.84 3.09
23A′ 4.68 2.90 5.04 4.57 5.07
33A′ 6.02 3.67 6.25 5.67 6.42
43A′ 6.47 4.47 6.80 6.43 6.97
53A′ 7.33 5.00 8.14 7.53 7.69
63A′ 7.66 5.64 8.29 7.97 7.95
73A′ 9.00 5.77 9.43 8.65 9.14
83A′ 9.46 6.51 9.96 9.72 9.86
93A′ 9.86 6.76 10.12 10.10 10.32
103A′ 10.78 7.21 10.37 10.50 11.17

quintets
15A′ 9.01 5.64 9.95 8.85 9.14

〈Error〉b -2.66 0.08 0.01 0.35
〈|Error|〉c 2.67 0.46 0.19 0.35

aCalculations described in text.b Average error.c Average absolute
error.
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error (〈|Error|〉), however, is a much larger 0.46, indicating large
fluctuations. Nevertheless, the MNDO-B model provides a far
superior description compared to the severely defficient standard
MNDO-CI calculations.
The HMNDO

π model describes the entire spectrum of the
excited states much better over all, with similar errors but
smaller fluctuations. The average error from the ab initioH ν

calculations is a miniscule 0.01 eV, and the average absolute
error is now only 0.18 eV! Note, however, that adjusting the
γC,C andγN,N integrals raises the lowest singlet state and lowers
the first triplet. Additionally, both of the two lowest excited
singlets remain 0.1-0.2 eV too high in both the MNDO-B and
HMNDO

π models. A more optimalHMNDO
π model must further

optimize the MNDO one-electron parameters in order to
reproduce the ab initioU1

ν operator more accurately. Correc-
tions include both employing a better parameter optimization
method (such as a genetic algorithms approach) and improving
the MNDO functional form for the one-electron operator.
Further corrections might then model the environmental de-
pendence of theγC,C effective integrals.
C. Analysis of Other MNDO-CI Parametrizations. A

number of semiempirical methods treat excited states of
protonated Schiff bases, including PPP, ZINDO, and MNDO-
CI methods.2,5,7,9,22,34 In particular, MNDO-PSDCI calculations
have been used to interpret the spectroscopy and photodynamics
of retinal and its analogs.1,4-6 It is of interest to compare the
MNDO-PSDCI semiempirical excited-state method to the ab
initio theory in order to understand why MNDO-PSDCI
performs so well.
The MNDO-PSDCI parametrization corrects the MNDO one-

electron one-centerHu,V integrals by rescaling the MNDOâC
parameter by 2.48 and then reducing theπ-mobility by the factor
0.75.5 Thus the MNDO-PSDCI calculations resemble the
MNDO-B calculations described above, and it is expected that
this MNDO-PSDCI parametrization should describe low-lying
excited singlet states of Schiff bases quite wellsat least for
planar geometries. Figure 3 compares MNDO-PSDCI calcula-
tions of the low-lying excited states of the 2,4-pentadien-1-
iminium cation with the other theoretical treatments examined
here. As seen, the MNDO-PSDCI method does indeed perform
quite well for the low-lying excited singlet states, even though
it employs both SDCI approximations and an empirically
derived parametrization. The MNDO-PSDCI excited singlet
states only differ from the ab initioH ν energies by 0.22-0.23
eV on average, with all transitions lower in energy than those
calculated via the ab initio procedures. The semiempirical
treatment actually outperforms the only slightly approximate
H ν-SDCI calculation, which is systematically too low by 0.35
eV on average. In general, the MNDO-PSDCI errors lie within
the standard accepted values for state-of-the-art ab initio
calculations for the excited states of polyenes21 and at a fraction
of the cost of the ab initio calculations.
D. Evaluation of ab Initio SDCI Calculations on 2,4-

Pentadien-1-iminium. Finally, we wish to evaluate the ac-
curacy of previous ab initio MRSDCI calculations on both the
spectra and the excited-state potential energy surface. The ab
initio H ν method is fully size-extensive and size-consistent, the
perturbative equivalent of the more familiar MRSDCI method.
As such, one expects both methods to yield similar results when
employing roughly the same active spaces and ab initio primitive
basis sets. Furthermore, we can estimate the size-consistency
errors associated with such CI calculations by diagonalizing an
approximateH ν-πCI matrix which includes only singles and
doubles excitations out of a HF-like reference state rather than
the full πCI matrix. We denote such calculations as theH ν-

SDCI approximation. This approximation does not fully
reproduce the size-consistency errors in MRSDCI calculations;
however, it does provide a crude estimate, plus it mimics the
MNDO-SDCI approximations commonly employed in semiem-
pirical excited-state calculations.
Table 2 lists the results ofH ν-SDCI calculations on the

spectra of 2,4-pentadien-1-iminium. Both the average error
and the average absolute error are 0.35 eV, which are, in fact,
greater than the errors associated with the simple semiempirical
HMNDO

π calculations. The so-called “semiempirical” approxi-
mation to theH ν operator actually yields errors of the same
magnitude as the “ab initio” errors involved with SDCI
calculations.
Table 3 presents calculations of the vertical excitation energies

(in eV) for 2,4-pentadien-1-iminium with a 6-31G* basis set
and the middle double bond rotated to 90°. (The exact geometry
is the (90, 180) geometry presented in ref 11.) TheH ν and
MRSDCI calculations therefore utilize the exact same geometry
and basis set and should yield similar results. Additionally,
theH ν calculations employ optimized “full” orbitals rather than
semiempirical-like “constrained” orbitals.12,33 The MRSDCI
excitation energy is 0.82 eV (18.9 kcal/mol)11 whereas theH ν

energy is much smaller 0.53 eV (12.2 kcal/mol). TheH ν-SDCI

Figure 3. Schematic comparison of selected ab initio and semiempirical
excited singlet state calculations for the 2,4-pentadien-1-iminium
cations. Symmetry labels are very approximate and are based on a
correlation analysis with respect to the excited singlet state manifold
of all-trans-hexatriene. The MNDO-PSDCI calculations used the
standard MNDO parameters with the following exceptions:Uss(carbon)
) -54.37093 eV,Uss(oxygen)) -102.63364 eV,Upp(oxygen))
-80.13140 eV,âp(carbon)) -19.67662 eV,âp(oxygen)) -42.49451
eV, σ-mobility constant) 1.25, π-mobility constant) 0.75, Rij
(repulsion correlation length)) 1.33 Å. All (9) singles and (45) doubles
from theπ andπ* orbitals were included, and transition energies are
relative to the correlated [E(S0) ) -0.8066 eV] ground state.
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excitation energy, which lacks some size-consistency correc-
tions, is a larger 0.74 eV (17.1 kcal/mol). Hence, we can crudely
estimate the size-consistency errors in the MRSDCI calculations
to be 0.2-0.3 eV (4-7 kcal/mol).
In light of the size-consistency errors associated with the ab

initio calculations, consider now how wellHMNDO
π calculations

reproduce the vertical excitation energies of the twisted polyene.
The lowest singlet state lies at 0.25 eV, 0.2-0.3 eV lower than
the ab initioH ν calculations. The second excited singlet fares
much worse, being 0.6 eV too low in energy. The low-lying
triplets all appear very accurate. Nevertheless, the general result
holds that the semiempiricalHMNDO

π calculations perform as
well as the ab initio MRSDCI calculations for the first singlet
state when considering that the MRSDCI calculations include
large (4-7 kcal/mol) size-consistency errors.
E. Comments and Conclusions.The effective valence shell

Hamiltonian (H ν) theory provides a rigorous means to rep-
arametrize semiempirical methods using state-of-the-art ab initio
data. While some ab initio studies disavow semiempirical
methods,10,11 none offer any practical solutions to correcting
the basic models. A recent ab initio study demonstrates that
the standard AM1-CI calculations, as implemented in MO-
PAC93, cannot produce reasonbly accurate excited states or
potential energy surfaces for the small, protonated Schiff base
2,4-pentadien-1-iminium.11 Here we show how to use ab initio
H ν calculations to reparametrize the ground-state MNDO
method to treat excited-state spectra with ab initio accuracy (less
than 0.3 eV21)sat least at planar geometries. The new
parametrization requires only trivial modifications to the
standard MOPAC93 computer program. We then explain why
previous MNDO-PSDCI calculations have worked so well.
Earlier H ν calculations already consider 2,4-pentadien-1-

iminium, providing a reference spectrum of all low-lying
π-electron excitation energies. The same calculations also
yield detailed insight into how to adjust the standard MNDO
ground-state parameters for excited-stateπCI calculations. We
construct a newHMNDO

π parametrization that only requires
reseting the numerical values of the MNDO ground-state
p-orbital parametersUC,UN, âC,GC,C, andGN,N to more closely
reproduce the ab initio values of the correspondingH ν effective
integrals. The MNDOâC should be adjusted as to remove all
electron-electron correlation from the MNDO one-electron,
two-centerHu,V π-electron integrals. The MNDO ground-state
GC,C andGN,N π-electron parameters should be increased in
value by about 1.5 and 2 eV, respectively, to reproduce the
average of theH ν 〈pu(1),pV(2)|V1,2ν |pw(1),px(2)〉 effective inte-
grals. Even though this newHMNDO

π parametrization does not

incorporate does not incorporate the full complexity of the ab
initio effective integrals, which includes environmentally
dependentGC,C integrals, three-electron effective integrals
(〈pu(1),pV(2),pw(3)|W1,2,3

ν |px(1),py(2),pz(3)〉), etc., the HMNDO
π

calculations reproduce the lowest-lying, constrained ab initio
H ν 20 vertical excitation energies to within 0.2 eV on average.
Modern semiempirical theories actually retain the original

Gu,u ) γu,uColoumb integrals and adjust theHu,V ) âu,V integrals
(MNDO adjustsâu and âV) to fit experiment. But it is now
evident that the ab initioHu,V π-electron effective integrals
contain only 0.1-0.2 eV of electron correlationsat least in
protonated Schiff base polyenessand therefore the MNDOπ-
CI parametrization need only adjustâu andâV to reproduce the
bareHu,V integrals. The standard PPPâu,V contains far too much
correlation forπCI calculations, and is about 1 eV too small
for protonated Schiff bases.38 This is because theâu,V were
transfered from neutral polyenes, but theâu,V in neutral polyenes
also includes averages of additional two- and three-electron
effective integrals (〈pu(1),pV(2),pw(3)|W1,2,3

ν |px(1),py(2),pz(3)〉)
in order to account for polarization and Rydberg contributions
absent from the constrained PPP valence space.30,9 The
protonated Schiff bases do not require these contributions in
their low-lying electronic states, and so theHu,V ) âu,V
parameters require virtually zero correlation.
The ab initioH ν calculations also provide an estimate of

the size-consistency errors associated with previous ab initio
MRSDCI calculations of the excited state of this small,
protonated Schiff base polyene. We estimate these errors to
be 0.2-0.3 eV (4-7 kcal/mol). Additionally, we show that
semiempiricalHMNDO

π calculations perform reasonably well for
the twisted polyene given the accuracy of state-of-the-art ab
initio theory. In particular, theHMNDO

π calculations reproduce
the energy gap between the ground- and excited-state potential
energy surfaces to within the 0.2-0.3 eV error range expected
from current excited-state theory. One should also bear in mind
that even MRSDCI excited-state potential energy surfaces may
not properly describe the excited-state photodynamics of this
small polyene and that further theoretical work is certainly in
order.39,40

The calculations presented here elucidate how to immediately
apply H ν calculations to improve traditional semiempirical
models without having to construct a completely new semiem-
pirical method from scratch. It is hoped that this study will
serve to motivate further basic and applied research on theH ν

approach. Future applied studies could focus on extending the
HMNDO

π method for more accurately treating excited-state po-
tential energy surfaces of the protonated Schiff bases, examining
other photoactive proteins, and incorporating transition dipole
moments and transition metals into theHMNDO

π method. In
particular, an improvedHMNDO

π theory for twisting of polyenes
should, however, break the MNDO assumption of rotational
invariance and utilize different parameters for those orbitals
lying inside and outside the CI active space. Likewise,
semiempirical MCSCF calculations in general should employ
two different parametrizations: one suitable for core orbitals
and one suitable for active space orbitals.
Future research will focus on two outstanding problems in

H ν theory which will reduce the computational and mathemati-
cal complexity of the theory by several orders of magnitude.
First, to obtain just a few parameters, such asGP,P, one must
presently compute all possible two-electron integrals. New
studies will attempt to obtain theH ν effective integrals directly
in a localized basis of valence orbitals, thus reducing the
computation time by several orders of magnitude. Second, the

TABLE 3: Comparison of Computed Low-Lying Excitation
Energies (eV) for the 2,4-Pentadien-1-iminium Cation at a
Twisted Geometrya

state H νb H ν-SDCI HMNDO
π c MRSDCId

singlets
2S 0.53 0.74 0.25 0.82
3S 4.48 4.70 3.78
4S 5.00 4.79 5.60

triplets
1T 0.50 0.71 0.22
2T 2.95 3.32 2.94
3T 3.68 3.98 3.72

aGeometry (90, 180) taken from ref 12, in which the polyene middle
double bond is twisted to 90°. b H ν calculations employ the 6-31G*
basis set and six “full” valence orbitals.cMNDO-CI calculations utilize
the six valence orbitals with minimal s-orbital occupation.dReference
11.
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current second-order theory does not provide optimalGP,P

effective integrals, at least for small systems, and generally third-
order calculations are necessary. Consequently, future work
will also consider techniques for utilizing the second-order
theory to provide useful ab initio analogs of semiempirical
parameters.
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IV. Appendix

The ab initio H ν calculations discussed here have been
described in more detail first in the original work by Freed on
the third-orderH ν theory15 and its application to transbutadi-
ene16 and more recently in a series of ab initioH ν studies of
π-electron systems.12,13,29-33 Nevertheless, because theH ν

approach employs a number of approximations uncommon to
traditional ab initio theory, it is instructive to review some of
the specific choices and approximations used to construct the
ab initio H ν π-electron parameters for the small, protonated
Schiff base polyenes.
The ab initioH ν theory is based on Rayleigh-Schrödinger

multireference-configuration many-body perturbation theory,15

and, as such, describing theH ν calculations requires specifying
the zeroth-order HamiltonianH0 employed in the present
calculations. A well-chosenH0 yields a well-converging
perturbation series and thus physically meaningful results. A
poor choice dooms the calculations. In fact, the third-orderH ν

theory is very robust with respect to the choice of the orbitals
and orbital energies, but care must be taken to follow the general
guidelines laid out in the original formulation by Freed and
Sheppard15 for choosing the zeroth-order orbitals and orbital
energies.
Because we seek to derive semiempiricalπ-electron param-

eters fromH ν calculations, the four zeroth-order atomic valence
orbitals are constrained to be symmetry-adapted linear combina-
tions of atomic 2pπ orbitals.33 The atomic 2pπ orbitals are
arbitrarily defined within the primitive ab initio basis, the
Dunning PVDZ correlation consistent basis set,41 as the first
2pπ contraction on each atom C and N.
No attempt has been made to optimize the atomic 2pπ orbitals

because the precise choice of the atomic 2pπ orbitals does not
affect the accuracy of the third-orderH ν calculations, as
demonstrated previously on hexatriene.32 If one desires optimal
atomic 2pπ orbitals, it would seem most convenient to choose
the 2pπ orbital in order to minimize the third-order correlation
contributions to the one-electron, two-center (Hu,V) effective
integral because such a choice would simply comparisons to
semiempirical theory.
Given the valence orbitals, the core orbitals are defined in

the usual prescription29-33 by performing a constrained ground-
state SCF calculations in which the valence orbitals are not
permitted to mix with the core or excited orbitals. This
procedure allows the ab initio core to relax in the presence of
the valence electrons, hopefully improving the convergence of
the perturbation expansion. Likewise, the valence molecular
orbitals mix among themselves, hopefully yielding a more
convergent series. The core orbital energies are then taken as
the diagonal matrix elements of the ground-state Fock matrix.
The excited orbitals are then chosen by diagonalizing the N-1

electron ground-state Fock matrix, and the orbital energies are
taken as the diagonal matrix elements of this operator.
These choices of the core and excited orbitals as well as the

orbital energies are somewhat arbitrary, and, as above, the third-
order calculations are not sensitive to the exact choices. This
particular systematic choice, however, yields reasonable con-
vergence for many polyenes because it seems to balance the
terms in the numerators and denominators in the perturbation
series. The orbital energies set the scale of the denominators,
and the orbitals themselves are reflected matrix elements of the
perturbation (V) that appear in the numerator. One can imagine
other choices, such as using canonical HF orbitals and orbital
energies for the excited orbitals. In such a case, one would
find that the excited orbitals are very high, and, consequently,
the energy denominators would be so large that the terms in
the perturbation expansion would all be very small. Likewise,
one could choose so-called “bare” core orbitals,15 which
correspond to HF orbitals for the polyenes containing zero
π-electrons. The bare core orbitals make many of the terms in
the numerator identically zero. Again, one would find that the
core orbital energies are simply so low that the energy
denominators are enormous and the perturbation theory would
never converge. Again, no attempt has been made to optimize
the choices of the core and excited orbitals or the orbital energies
beyond the simple physical arguments given above. If one
desires optimal core and excited orbitals, it might seem
reasonable to adjust the orbitals and orbital energies such that
the second-order calculations converge more rapidly.
For example, the current second-order calculations systemati-

cally overestimate the correlation contributions to the effective
π-electron Coulomb interactionsGu,u for all polyenes, and,
consequently,Gu,u oscillates strongly between first-, second-,
and third-order. An improved choice of the core and excited
orbitals (or orbital energies) might damp these oscillations at
low order in the perturbation series, thus providing more
accurate second-order effective interactions. One approach
might simply rescale the orbital energies. Another would be
to try using constrained core orbitals derived from a different
SCF or MCSCF reference state, or even state-averaged MCSCF
calculations.
All that now remains to completely specifyH0 is to define

the valence orbital energies. This final step is quite simple but
also most crucial in order to ensure practical convergence of
the perturbation series. In allH ν calculations, the valence
orbital energies are all given an average value, thus forcing the
system to be quasi-degenerate. The corrections to this energy
averaging arise in the numerator of the third-order perturbation
theory. The conceptually simplest choice for an average orbital
energy is to place the valence orbitals halfway between the
highest core and lowest excited orbital (note that the lowest
excited orbital is usually near zero). In the current calculations,
we utilize a different procedure,29-30,33which places the valence
orbitals at-0.42 au, slightly below the halfway energy of-0.32
au. The exact value is not critical, but it is important to use an
average value. Indeed, the orbital averaging can convert a
poorly divergingH ν calculation into a convergence or asymp-
totically convergent series, even in cases where the quasi-
degeneracy conditions severely break down.42,43
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